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MANIPULATION  ERRORS IN COMPUTER  SOLUTION 

OF CRITICAL  SIZE  STRUCTURAL  EQUATIONS 

by  R. J. Melosh 
* 

SUMMARY 

The document  supplements  previous  studies  of  computer-induced  manipulation 
errors in finite  element  analyses of structures. It reports  and  interprets 
measured  errors for problems  ranging  in  size  up to the  critical  number  of 
calculations,  2p  where p is  the  computer  precision. p is 27 for  these  problems. 

It cites  errors  measured  in  analyzing  mixed'structural  systems  composed 
of beam  elements.  It  defines  eight  error  measures  and  evaluates  their  behavior 
as  a  function  of  the  definition  of  the norm, number  of  calculations,  matrix 
density, number of equations,  use of critical  number  components, and minor 
arithmetic  sequence  changes.  The  measures  provide for distinguishing  the 
relative  value of residual  and  solution  measures  and  the  relative  importance 
of error  sources. 

It concludes  that  the  error  bounds  based  on  the  number  of  calculations  is 
an  increasingly  poor  guide  to  actual  errors  as  the  number  increases. It 
recommends  development  of  statistical  data  relating  the  number  of  calculations 
and error  from  practical  problems.  This  data  would  be  used to indicate  the 
probability  of  success  for  particular  problems. 

It  indicates  that  error  measures  are  sensitive  to  error  measuring  and 
problem  details.  Measures of residual  errors  are  much  greater  than  corresponding 
solution err0.r measures.  Change  of  loading,  minor  changes  in  the  arithmetic 
sequence, and change  in  the  definition  of  the norm--each has a  significant 
effect on indicated  errors. 

It  reports  that  inherited  and  decomposition  errors  are  the  more  important 
error  sources. It compares  discretization  and  manipulation errc;rs  and finds 
discretization  more  important  in  small  problems  (less  than  2000  equations on 
a 27 bit  computer). 

It recommends four error  measures  to  be  incorporated in displacement 
method  analyses;  a  numerical  singularity  check,  positive  definite checks, 
a  total  solution  energy  error  measure,  and  a  stress  precision  check. These 
are  selected  because of their  demonstrated  validity, economy, and  ability  to 
distinguish  among  important  error  sources. 
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Section 1 

INTRODUCTION 

This is the  third in a series of reports on manipulation  errors  induced by 
the  digital  computer in finite element  analyses  of  structures. The first  report 
survey  11  the  errors  induced  in  the  computer  phase  of  analyses.  The  second 

' report'2Bexamines the  effect on error  magnitudes  of  changing  various  analysis 
parameters.  This  pair of reports  includes  data  for  numerical  experiments on a 
27 bit  mantissa  computer  with  up 60 1200  equations  and  less  than  the  critical 
number  of  calculations: 13.4 x 10 . 

(1)* 

This  report  describes  th  results of additional  experiments  for  sets  of  up 
to 2000 equations  and 40 x 10% calculations.  These  data  pertain  to  frame  structures 
with  varying  degrees of connectivity.  One  group  of  tests yields data on relative 
error  magnitudes  in  parts of the solution  process  and  comparisons of error  criteria. 
The  second  group  shows  the  effect of the  number  calculations and calculation 
sequence  changes  when  the  critical  number of calculations  are  involved. 

This report  describes  the  basis  of  experimentation,  the  results  and  their 
interpretation. The next  section  cites  the  test  process  and  error  criteria  and 
justifies  the  experimental  setup  common to  all  testing. The third  section 
describes  the  experiments for the  problems  involving  less  than  the  critical  number 
of  calculations. The fourth  section  cites  data  relevant to  the  tests for  critical 
problem  size  analysis. The fifth  section  identifies  error  checks  recommended for 
production  computer  analyses.  The last section  contains  conclusions. 

The  assistance  of  Robert  Steeley  of Philco-Ford in  modifying  existing  computer 
codes, and  managing  experimental  data  development  was  vital  in  this  study. In 
addition, the assistance of the  Ames  Research  Center  Computer  Laboratory in 
implementing  experiments, is gratefully  acknowledged. 

* 
Superscripts  in  parentheses  denote  numbers  of  references  cited  in  REFERENCES. 



Section 2 

BASIS OF EXPERIMENTS 

This section  describes  the  test  problems and  testing procedures for extending 
study of manipulation  errors  into the critical  problem  range. It details  error 
measures used. It justifies  the  experimental  basis  using results and conclusions 
from Ref. 1' and 2. 

Analysis  Approach 

The analysis  method for selected  problems  will 
direct  stiffness  method. In this method, stiffness 
coefficients are  developed  directly to express  the 1 
displacement  equations in the  form: 

Kn = F  

use finite elements  and  the 
coefficients and  stress 
oad-deflection and stress 

where K is the symmetric, positive  definite  stiffness matrix, 
A i s  the vector  of  displacement components, 
. F  is the vector of joint  loads, 
g i s  the  vector  of  stresses for element i, 

SA is the  matrix  of  stress  coefficients for element i, and 
f is the  number  of  finite  elements in the  structural  system. 

Equations ( 2 - 1 )  are  solved for displacements.  The  solution will  be 
developed by decomposing K into  the  form: 

where L is a  lower  triangular  matrix, 
$is a  diagonal matrix, and 
c i s  the transpose  of L. 

Forward  substitutions  will  evaluate y where 

L ?  
= F  

Division by  the diagonals  will  then  form z where 

$ =  Du, 

( 2 - 4 )  

( 2 - 5 )  

Backward  substitutions  will  produce  by  solving 

With  the displacements known, the stresses would  be  found  by  the multiplication 
v 

of Eq. (2-2). Since stresses are differentials of displacements,  this  multiplication 
is intrinsically a differencing  operation. 

It has  been  shown  in  Ref. 1, page 135-137, that  the  largest error in  both  the 
displacement  and  force  methods,  in  solving for primary unknowns, involves  a  positive 
definite  matrix  of  coefficients.  In  the  displacement  method,  this  is  the  stiffness 
matrix.  In  the force  method,  this  is  the  redundants'  matrix.  This  matrix  remains 
after  displacement  unknowns are eliminated from the structural  equations. 

2 



- 
Furthermore, Ref. 2, page 103, reports  that  the same error  sources  limit 

analysis  accuracy  in  both  methods. Large singularity  errors are possible in each 
and  are  avoidable by care in calculation  sequencing.  In  the  displacement  method 
this  is  achieved  by  taking care in  sequencing  joints.  In  the force method,  this is 
achieved by careful  selection  of force redundants.  Critical  arithmetic  errors can 
arise in  each  method.  In  the  displacement  method  these can occur in developing 
stresses by differencing  displacements. In the force method,  these can arise  in 
adjusting  the  value  of  internal forces in  the  elements of the  determinate  sub- 
structure  due to  the  redundants. 

Thus,  examination of errors  in  the  displacement  method  will  study  the  same 
type  of  equations as cause manipulation  error  difficulties in  the force method. 
The  principal  error  sources  in  stiffness  equation  solution have their  counterpart 
in  the force method. 

The  modified  Gauss  decomposition  defined by  Eqs. (2-3)  is  selected  to  avoid 
errors  introduced by taking square roots, as required  in  Choleski  decomposition. 
These  errors  can be  much  larger  than  the  error  of one part  in  the  last  binary 
position  possible  in  the  diagonal  divisions.  Reference  1,  page 41-47, shows  these 
errors can result  in  numerical  instability.  Reference 3 ,  page 667, reports a test 
of  200  joint  regular  cantilevered  beam  in  which  these  errors  result  in 38% error 
in  displacement  predictions  using a 27 bit  mantissa  computer. 

Test Problems 

All tests use the  straight  prismatic  beam  stiffness  matrix  as  the  basic  and 
only  element  stiffness  matrix.  This  matrix  relates a set of forces at the ends to 

I 

-6 -3 I 4,- 
3 f 1.-3 

equation: 

(2-7) 

M is a moment, 
a is. the  beam length, 
E is  Young's  Modulus, 
I is the  bending  moment  of  inertia, 
u  is a lateral  displacement; 
8 is a rotation  in  bemding, 

The first  subscript denotes  the  vector  direction  (the  axis  coincides  with  the 
beam  neutral  axis), and  the  second  subscript  denotes  the  beam  end. 

All  tests  represent  the  stiffness  coefficients by the  nondimensional  coefficients 
given  in Eq.  (2-1).  All  segments  are  required  to  be  the  same  length. The total 
stiffness  matrix  is  therefore  formed  simply as the  union of element  stiffness 
matrices.  When  stiffness  variations  are  considered,  the  scalar  stiffness, Z E I  
is changed  and  the  nondimensional  coefficients  scaled. These scalars  are  entered - 3 '  
as  integers S O  that  only  the  relative  magnitude of the  stiffness  scalars  affects 
the  manipulation  errors. 

3 



Structural  systems  modelled  consist  of  collinear  beam  segments.  Each joint. 
is  connected  to one  or more  sequentially  higher  numbered  joints as required to 
provide  stiffness  matrices of various  densitites.  The  sparsest  of  these  matrices 
represents a cantilevered beam. A completely  full  matrix  represents a system  in 
which  every  joint  is  connected  to  every other joint.  This  c.lass of matrices  is 
called a "mixed  Structural.  system" because elements are neither all acting  in  Series 
nor all  in  parallel.  Since  the series system  is  the  sparsest  matrix  and  the  all 
parallel  is full, the  mixture can be represented by the  percent  of non-zero 
elements  in  the  matrix,  the  matrix  population  density. 

Table I particularizes  the form of  the  stiffness  matrices for all mixed 
structural  systems.  In  test  problems,  the K K T, and K partitions are 
those  indicated as partitions in  Eq. (2-7). 'Ge &$tal unreszrained  stiffness 
matrix  is  characterized by the  matrix order, its  bandwidth,  and  the  geometric 
progression  ratio. If this  ratio is  1.0, the  structure is  "regular". For this 
class  of  matrices,  the  solution  wavefront  and  matrix  bandwidth are the  same, 

2 

The  beam  element  stiffness  matrix  is  chosen  as  the  basic  unit  because  previous 
study  shows  it  involves  larger  manipulation  errors  than rods, membr  nes or prisms. 
Decomposition  errors  for  cantilevered  beams  were  shown  to  vary  as 6' b-?where f 
is  the  number of finite elements; b the  number  base; and p the  computer  precision. 
Decomposition  error  for a straight  hinged rod, on the  other hand, var'es f KP 
In  the  worst case, singularity  error  limits  the  number of beams to 
rod  sigments can be tre  te  Substitution  errors  vary  as 360fb-' for  cantilevered 
beams, but  only  as 265 $ b -9. for  rods.  (p-27).  The force equilibrium  equations 
are  written  first  in  Eq. (2-1) to  avoid  unstable  error  propagation, a phenomenon 
peculiar to  the  beam  (and  plate)  analyses  because  they  involve  second  order 
difference  equations.  (See  Ref 1). 

4 &"Ebut 4 b-P 

The  Table I class of mixed  structural  systems  is  selected for study  because 
it  simplifies  development of coefficients in perfect  numbers. It facilitates 
evaluation of the effects  of  matrix order, sparcity, number of calculations and 
relative  stiffness,  on  manipulation  errors.  Since,  as  shown in Ref. 2, the 
completely  full  regular  mixed  structural  system  cannot be numerically singular, it 
admits  evaluation  of  manipulation  errors when equation  sort is non-critical. 

Solution  Method 

Policies  for  solving  the load-deflection equations  are  as  follows: 
1. Coefficients of the  stiffness  matrix  will be express in perfect 

2. The  equations  will be  treated  in  the  same  sequence  as  they  are 
numbers  (integers). 

expressed  in Table I with  boundary  conditions  imposed  in  the 
last  equations. 

single  joint.  Loadings  will  consist of reinforcing  loads of 
equal value, at every  jo.int.  Two  loadings  will  be  used. In 
the first,  every  component  of  the load vector  will  be 1.0. 
In the second, every  component  will be ( Z 2 t  1 )  / p 7  . This 
loading is the "bound11 loading. 

4 .  All structural  analysis  calculations  will  be  performed  in 
single  precision  using a computer  with a 27 bit mantissa. 

5. The mode of arithmetic  will be  truncation. 

3 .  Displacement  boundary  conditions  will  consist of clamping a 

4 



TABLE I 

=ED STRUCTURAL SYSTEMS 
1" ~ . ~ ~. 

- N N = matrix o rde r  

b - U - - 
b = semibandwidth 

u = uncoupled size 
I -  
I 
I - 

K1l K12  K13  K14 ' 0 N1: = N - u  

%2 K23 %4  K25 0 0  i = row  number 

K33 K34  K35 K36 0 r = geometric  progres- 
sion  ratio 

K44  K45  K46  K47 

e m .  
K55 K56  K57 Fi 2j = element stiffness 

K66 K67 

5 7 -  

K11 = k l l ( b - 1 )  %2 = %3 - K14 = k12 

K22 = $2 + ( b - w l l r  K23 - K24 - K25 = rk12 

- 

- - 

2 2 K33 = (l+r)sz + (b-Wllr  K34 = K35 = K36 - - r k12 

K44 = (1 + r + r )s2 + (b-l)kllr 

K55 = (r+r +r )s2 + (b-2)kllr 

1 = (r +r +r )s2 + (b-3)kllr 

~ K~~ = (r +r +r )s2 

2 3 K45 - - K46 - - K47 = r3k12 

2 3  4  4 
K56 = K57 - k12 

K67 = k12 

- 

2 3 4  5 

3 4 5  

5 

, Therefore Kii = flkll + f2S2 and K.. = k r i- 1 
1J 12 

where fl  = (bi -. l)r if bi> 1 i- 1 

with 

i f i > 1 ,  r = l  

' =  i - 1 if i-1 I b-1 
b -  1 if i-1 > b-1 

5 



The first  policy avoids random  inherited errors. The second is consistent 
with the  Ref. 2 results.  These  show  that  joint  sequencing  based on minimizing 
wavefront is usually  sufficient  and  sequencing  from  the  most  flexible  to  least 
flexible region is best. The.third and fifth policies  are  selected  to  maximize 
manipulation errors. Reference 2 reports  that  manipulation  errors  reduce  as 
additional  kinematic constraints are  imposed  while  Ref. 1 shows substitution 
errors  are  maximized by using  reinforcing  loading. Truncation is used  since  it 
incurs  larger  standard  deviations  of  error  than  rounding. Twenty-seven bit  single 
precision  is  selected to complement comparable precision test data  cited in Ref. 2. 
Reference 1 shows errors vary  inverseiy  with  the precision, so results of  tests 
reported  here  can be projected  to any other  binary  computer. 

Manipulation  Error  Measurements 

Error  measures include evaluations for decomposition,  numerical  singularity, 
diagonal division, substitutions,and  total  closure. These evaluations  are  performed 
in  a  precision higher than for the  solution  precision. Double-precision was used 
here in evaluating  error  measures.  The  error  measures are described  in  the para- 
graphs that  follow. 

Decomposition  Error  Measure.- The decomposition  error is  measured  by: 

( 2 - 8 )  

where e ,  is  the decomposition  relative error, 
N is  the matrix order, 

Eii is  the corresponding  diagonal of K. Ki i 

is  the diagonal  element  of  the  matrix K-L D"LT and 

Singularity  Error  Measure.-  This  error  is  measured by: 
b "? 

P =  
- 

-5 v5 
( 2 - 9 )  

where 15'; is  the singularity,  relative  error,  and 
U, is the minimum ( C'ii / k&) where D,',; 

is the  .[*diagonal of D. 
p is the  precision  and 
b is the  base (2 . )  

This measure is modified  from  that  given in Ref. 2 to  reflect  maximum  errors 
rather  than  expected. 

Substitution  Error Measure.- Forward, diagonal, and  backward  substitutions  involve 
solving  equations  of  the form, 

A % =  c 
where A is any of the  decomposition factors L, LT, or D , -1 

x is the  vector of unknowns, and 
c i s  the known right  hand  side. 

Then, the  substitution  error  measure is given by 

(2 -10)  

6 



where eB is the substitution  relative error, and 

Note that  Eq. (2-11) defines error measures involving-residuals. 

11 I[ is the  norm  floperator". 

Measures of substitution  error  are taken for forward) e,, , diagonal, e ,  , 
and  backward e63 substitutions.  Both  Euclidean  norms  and  the'  norm  which is t%e 
sum of  the  absolute value of  vector  components  are used. 

A second  error  measure  for  evaluating  back  substitution  errors is the 
direct  back  substitution  error  measure. It is defined  by 

where em is  the higher-precision error  measure for back  substitution  relative 
&L9 is  the value of #&*developed using  higher-precision  arithmetic 

D 

error, 

(p=54), and 
f b ~ ~  is  the  value  of qiobtained using  basic  problem  precision  arithmetic  (p=27). 

Total  Error  Measure.-  This  error  is  measured by evaluating, 

where e, is the  total  relative  error. 
This measure  like  the  substitution  measures  of 
imbalance in  the  equations  when  the  calculated 
original  equations. 

Equation (2-11) measures  the 
solution  is  introduced  into  the 

Equation'(2-13) provides  a  residual  measure  of  total  error. An alternate 
measure is developed  by  considering  the  elastic  work. The work  error is measured 

where ek/ is the  work  relative  error. 
The  first  term  in  the  numerator  is  external  work  and  the second, the  internal'  work. 
Note  that  this error  measure is signed. The negative  sign  indicates that internal 
work  exceeds  external. 

The work  error  measures  total error by  evaluating  the  internal  work  using 
Eq. (2-3) and (2-61, i.e. , 

Equation (2-14) transforms  Equation (2-13) to  the form 

(2- 15) 

=TbJ 
(2-16) 

7 



where t?+q measures  the  total  work  error. 
The  relation  between the total  error  and  component  errors can be developed  by 
considering  the  interaction of errors in each  operation.  Suppose  the  error in 
the  solution is such  that 

A = K” (I+ e , ) F  (2 -17 )  

The corresponding  decomposition can be written in similar form as 

L ~ D - ’ L =  K ( r + e , >  (2-18) 

Then  the  solution,  using  the  decomposition  algorithm, can be  expressed  by 

where  terms  involving  products  of  the  error  matrices  have  been  assumed  negligible 
and  dropped in  the  expansion. Then, comparing Eq. ( 3 - 3 )  and ( 3 - 5 )  and  taking  the 
matrix norms, 

(2-20) 

ez is called  the  summed  error  measure. 

Number of Calculations.- To relate  error  to  the  number  of calculations, the formulas 
given  in Table I1 are required.  These  define  the  calculations  involved in  each  of  the 
equation  solving  operations  in  terms  of  the  parameters  defined  in  Table I. The  number 
of  calculations in forward  and  back  substitution are the  same. 

In applying  these  formulas  to  matrices of the  class  defined in Table I, X 
varies  by one  in  alternate rows for beam  elements. Therefore, X is taken  as  the 
average  bandwidth  (wavefront). 

These error measures are  selected  based  on  the  experience  reported in Ref. 1 
and  2.  Only  equation solution  errors are checked  because  input  output  errors  are 
negligible, and coefficient  generation  errors are  usually small, controllable, and 
easily  sensed.  The  decomposition error, Equation (2-8) was  found  adequate,  though 
it requires ZN(Ntl) calculations, where W is the  wavefront.  The  singularity  error 
measuz’e  was  found  to be  the most  important  and  efficient measure  for  sensing  poor 
calculation  sequencing. The substitution  measures are introduced to facilitate 
numerical  evaluation of the  relative  importance of error  sources. The direct 
back  substitution  measure  is  used to determine the importance of error  measure 
definition.  The  work  measure  is  proposed as an  efficient  measure  which  could  be 
included  in  production  programs.  Residual  error  measures  are  selected  because 
they  provide  exacting  measures of error  which can be  used  to  estimate  errors in 
stress  predictions.  These  errors  were  shown to  be unbounded in displacement 
analyses. 
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The data developed  in  evaluating  these  error  measures  permits  determining 
the  magnitude  of  errors  as  a  function  of  the number of  calculations  and  equations. 
Reference .(2), pages 58-65 and  page 101, shows  error  bounds  based on these  para- 
meters  are  usually one to  two orders  of  magnitude  high for displacement  analyses 
and one to four orders  high for force.  Tests for both  methods  show  that  the  bounds 
are realizable in computer. analyses. 

TABLE I1 

Formulae for Number of Calculations 

Operation  Multiplications 

Decomposition u 2  ( " ; 4 - 1 ) + ~ ( " ; - ~ ) ~ 2 ~ ~ ~  2 3  

Division (ut-b)  = t\l 

Substitution Zub + b'+ b e Z d Z d  

Additions 

0 
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Problem 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

No. of 
Equations 

50 
100 
200 
200 
200 
200 
200 
200 
200 
300 
300 
30 0 
30 0 
30 0 
400 
400 
400 
40 0 
40 0 
500 
500 
50 0 
600 
600 
600 
600 
700 
700 
700 
800 
800 

1000 

Table I11 

Subcritical  Test  Problem  Sizes 
* 

Density % 

13 .O 
6.75 
3.43 
5.37 

20.2 
28.7 
36.9 
44.5 
51.6 

11.3 
17.4 
23.3 
29.0 

3.61 

1.73 
2.72 
7.56 

11.4 
15.0 

2.18 
6.85 
9.90 
1.16 
1.82 
3.13 
5.73 
0.99 
1.56 
2.69 
0.87 
1.37 
0.70 

Calculations 
Decomposition 

2 5. 633 
1. 133 
2. 253 
5. 814 
8. 685 
1. 805 
3.01 
4. 465 5 
6.  113 
8. 744 
8.88 
2.  155 5 

3. 905 
6.  113 
4 .  504 
1. 174 
9.  385 
2.  135 
3. 784 
1. 465 
1. 505 
3. 153 
6.  754 
1. 754 
5.32, 
1.80; 
7.  884 
2.  044 
6. 213 

2.  344 
1.13 

9.  oo4 

Substituttons 
2 6.  063 

2. 403 

1. 614 
2.  314 
2.  984 
3. 604 
4. 183 

1. 213 

3. 9g4 

5.  9g4 
2. oo4 
3. 124 
4 .  204 
5. 243 
4.  803 
8 .004 
2.  374 
3. 5g4 
4. 7g4 
1.00, 

4 3. 364 
4. 903 
7. 204 

2 .  154 
4 .  043 
8. 404 
1. 404 
2.  513 
9.  604 
1. 604 
1.20 

1. 204 

Total 
3 1. 173 

4 .  653 
9.80 
1. 035 5 

2.  035 
3.31 
4.825 5 
6 .  524 
1. 475 

2.  465 
4.32 
6.633 5 
9. 304 
1. 975 
1. 185 
2.  4g5 
4 .  264 
2.465 
1 .835 
3. 644 
1. 404 
2.954 

2. 343 

1 .0g5 

7.  475 
2.   214 

3. 444 

3. 944 

1. 634 

8. 724 
1. 864 

2.33 

-k 
Exponents  indicate a power of ten. e.g. , 0. l 4  = 0.1 x 10 . 4 
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Section 3 

TESTS OF SUBCRITICAL SIZE PROBLEMS 

This section describes experiments and their  errors for problems  involving 
less than 13.4 x lo6 calculations. These data  give  values for all the  error 
measures  described in Section  2,  as a function of  matrix order, the  number of 
calculations, and matrix  sparsity. 

Subcritical  Test  Problems 

Table 111 cites the  set  of 32 subcritical test  problems. The table  lists 
equation order, density, and  the  number of calculations  involved in solution. 
These problems  vary  from  200 to 1000  order.  They  >include  from 606 to  3.94 x 10 
calculations. 

4 

The table  below  cites  similar data for equations  associated  with  the  analysis 
of  steerable  antenna  reflectors.  Comparing  data for these  problems  with  those  in 
Table IV suggests  that  the  test  problems  have  typical  characteristics.  The  trend 
toward  decreasing  matrix  density  with  increasing  problem  size  signals  the  tendency 
for  bandwidth  to  have a limiting  value  independent  of  problem  size. 

Table IV 

Equations  for  Steerablk  Reflectors 

Ref  lector 
Size 

40 feet 
60 feet 

85 feet 

No. of 
Equations 

105 
183 

282 

Population 
Density 

0.270 
0.205 

0.180 

The test problems  were  solved  with a computer  program  which  would  work  with 
the  stiffness  matrix in-core. The  sequence  of  calculations  in  decomposing the 

row was as  follows: 

1.  Form  the  reciprocal  of the diagonal. 
2. Multiply  all  elements in the row by  the  reciprocal. 
3.  For  each element-with 'higher row and column  number  than  the diagonal, 

perform  the  subtrac 

4k = (3-1) 
where = i,i+ I > .  . .N; the row number of the  element  being  adjusted 
adjusted. 
These steps were repeated  as i varied  from one to N, the matrix order. 
These operations  produce coefficients of the L matrix  with  coefficients 
of D on the  diagonal. 

# = i+l, ;+2,, . . . . .N, the column number of the  element  being 

The remaining solution steps are as follows: 
4. Evaluate in turn  by  subtracting  components of the  inner  product 

from  the  vector  component. 
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5. Divide each ' by  the  corresponding D, to  evaluate 
6 .  Evaluate eac!'x.in turn  by subtractind  components o he inner  product 

vector from the'Z. component. 
J 

Test  Results 

Table V lists values of the  measured  errors for the 32 test  problems This 
table cites error for the bound  loading.  (See item  3'of  solution  method on page 4 ) .  
It cites  Euclidean norms of  the  error  vectors. 

There is little  difference in errors for these  two  loading  conditions.  Over 
the 32 problems  the  difference in measured  errors  between  loadings  with  components 
of 1.0 and  the  bound loading is generally  less  than 1.6%. Each  loading gives 
maximum  total  error in about  half of the runs. 

The  selection of the  types of norm, on the other hand, has an important  effect 
of  the  magnitude  of  indicated  errors. The ratio of  the  Euclidean  to the  absolute 
norms  varies  from 1.13 to 1.31 over the problem set for the  total  error  measure. 
This suggests that  at  least 18% deviation  from an indicated  trend can arise  if 
different  norm  measures  are  taken. The same  range of ratios of errors as a  function 
of  norm is also observed for substitution  errors. 

Interpreting  Error  Data 

There  is  a  redundancy  of  data in Table V. Two independent  measures  of  total 
error  are  provided  by e, and e?&.  A third  total error  measure is reduced  by 
applying  Eq. ( 2 -  19) to the  data.  Furthermore, e63 and e& provide  two  independent 
measures  of  back  substitution  error. To reconcile  the  differences in magnitude of 
these  comparable measures, the  subset  of  problems  representing  cantilevered beams, 
problems 1, 2, 3, 15, 23,  27, and 30, will  be  examined in detail. 

Eigure 1 shows  the  relations  between  error in tip deflection prediction  and 
the  number of equattons for these  problems. The continuous curve portrays  the exact 
manipulation  error for the bound  loadings. The long-dashed curve  shows how the 
energy  error varies  with  order. This curve is plotted  directly  from  data  in  Table V. 

The exact  error  is  developed  by comparing the analytic  solution of the 
difference  equations  with  the  computer  predicted  tip  deflections.  The  analytic 
solution  expresses  tip  deflections as 

where J = N / 2 .  The evaluations  of Eq. (3-2) and  the associated tip deflections and 
errors are  summarized in Table VI. These data show the  bound  loading  has  larger 
errors  than  that  involving  perfect  loading.  This is due  to  the  persistence of 
perfect  numbers  through  forward  substitutions  with  the  unit  loading  and is reflected 
by  the  zero  errors in Table V. 

Both of  the curves in Fig. 1 show  a  monotonic  increase in relative  error as 
the number  of  equations  increases. The exact  error is about  ten  times  the  indicated 
energy  error  throughout  the  range. Thus the  energy  error  measure  correlates  with 
the  actual  errors in displacements. 
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Table  V 

T e s t  Results for S u b c r i t i c a l   P r o b l e m s  

Problem 
.Number 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

a 

la 

* 
Exponent 

Decomp 

e, 
0 
0 

O- 8 2.24- 
1.49-7 
2.15- 

3.51-7 
4.09-a 
2.24-, 
1. 13-7 

2.59 
3.52- 

2.a7-7 

1.a1-7 

2.01-a '-a 
a . 0 2 - ~  
1.53-7 
2.41-8 
2.24-7 
1.08-7 

2.03-a '-a 
5.19-7 

2.24-a '-a 
5.20 

2.24 
0 

1.83 

1.08 

'-a 

Fwd. Div. Bkwd. Dbl .   Prec .  

eel 
-7 1.56-7 

3.11-7 
6.36-7 
9.50 
6.3417 

7 .  21-7 
6.64L7 

7.75-7 
8 . 3 ~ ~ ~  
1.19-7 

9.1a-7 
9.13-7 

9. 
1.04 '6 
1. 27:6 

1.18-6 

1. 23-6 

1.51-6 
1.47-6 
1.97-6 

2.09-6 

2.33-6 
3. 15-6 
2.44-6 
2.56-6 

1 . a 5 - ~  

1. 

2.28- 

2.78- 

1. a3-6 

3.73-6 
2. a5 

e62 
- 10 

5 - 0 2 _  10 
1.95-10 
1.19-9 

7.33-9 

a. 14-9 

6.56-9 
6.29_9 

6.36-9 
5.72-9 

7.17-9 
6.29-9 
6.03-9 
5.72-9 

6.52-9 
7.01-9 
6.29-9 
5.79 
6.44:9 
6. 14-9 
6.01-9 

3.51 
7.01- 
6.71-9 -9 

2.39-9 
6.81-9 

1.71-9 
6.43 12 
9.83- 

6.25-  11 

5-62-11 

6 - 9 4 - 1 ~  

6 . 3 3 ~ ~  

e B?I 
. - 6  1. 77-6 

8.07_5 
3.12-6 
1.45-6 
i.03-7 
9.46-7 
9.03-7 
a. 7a-7 
a. 15-6 
2. 
1. 6 3 - 6  
1.52-6 
1.50-6 

1. 36-6 

2.05-6 

1. 4a-4 

2.a6-6 

2.02-6 
1. 97-6 
3.92-6 
2.5gm6 
2.64- 

4. 40-6 

3.  20-4 
4. 25-6 
5.  56-6 
4. 16_4 

2.a5-6 

3.4316 

5.3a-6 
5. a4-4 
7.91 

-9 9.03-7 

5.96-7 

6.12-7 
6.25-7 
6.44-7 
6.55-7 
6.62-7 
9.22-7 
8.79-7 

1 . 3 a - ~  

5.94-7 

a.a3-7 
9. 34-7 
9.76-6 
1. 17-6 
1.23-6 
1.07-6 
1. 
1. 15-6 
1. 59-6 
1.33-6 

1.72-6 

1.60 
1.60- 

1.3a-~ 

1 . 8 3 ~ ~  

1 . a 6 - ~  

1.a3-~ 
2.22 - 6  

- 6  

2.17-6 

2.47 
2.96- 

i m p l i e s  a base  of 10. e . g . ,  .1 = .1 x 10 -4 -4 

T o t a l  

II KA-FII 
11 F 11 

e" 
4.37- 
2.55-2 -3 

4.78-4 
2.08-5 
2.32-5 
1. 74-5 
1. 62-5 
1.64-5 
1.65-4 
4.62-5 
6. 24-4 

3.29 
3.04:;  
1. 13-4 
8.16-4 
1. 16-5 
7.50 -5 

1.43-4 
1.59 

5.41-3 

5.40-4 
2. 342 

2.79-4 
7. 722 
1.77-3 

4.09 

3.94-5 

5.a3-3 

1.12; 

l.90-4 

1.0a-3 

3. 342 

0 e,= 4.48 for a l l  p  oblems  except 1,  2,  3,  15,  23,  27,  30, and 32. -8 

For these, e, = 9.96 - 6  . es = b"YP- 

Work 

-8 3.25-8 
5.46-8 
9.04-9 

2.30-a 
1.22-8 

3 . 1 a - ~  
7. aa-7 
1.25-7 
1.66-a 

-3.26-a 

-1.13-8 
-a.5a-a 

4. 14-a 
6.76-7 
1.99-a 
2.42-a 

-3.61-:. 
- 1. 87Ia 

-5.52 

. 4.79-a 

-7.39-7 
-6.66-a 

3.30 
- 4.22': 
- 2.11 
-7.41-7 
5.09-a 

-1.03-8 
2.22 
5.0519 

-6.50 
4.57- 

- a  
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Figure 1. Exact Displacement and  Energy Error Growth 
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Problem 
Number 

1 

2 

3 

15 

23 

27 

30 

32 

No. of 
Equations 

50 

100 

200 

400 

600 

700 

800 

1000 

Table 

Cantilevered  Beam 

Tip Defl. 
Eq. (3-2) 

0. 113641676 

0. 168895007 

0. 260058178 

0.408023309 

0.20520525 10 

0.37945088lO 

0.646409321° 

0.1575014611 

VI 

Analysis  Errors *O 

Q 1.0 Q = Bound 
23 e 

5. 88-8 3. 18-7 

5. 9 T 7  6.46-7 

1. 4C7 1. 32-6 

7.2i"7 2.62-6 
- 3. 88-6 

- 4.37-6 

- 6.  58-6 
1. 58-6 5. 23-6 

* 
Powers  imply  a  ten  base. e. g., 3. = 3. x 10 . -7  -7 

0 Equations  in  optimum  sort,  b = 2, p = 27. 

e ,  

4.37-2 

2. 55-3 

4.78-1 

1.13, 1 

5.41 1 

1.08 2 

1.77 2 

4.09 3 



The last column of Table VI repeats  selected  data from Table V. Comparing 
these  data  with  errors  listed in the  next  to  last column shows the total  residual 
error  measurements  also  exhibit  monotonic  error  growth. However, error  magnitudes 
are four to nine  orders of magnitude  greater than actual  deflection  errors  and 
vary over the  problem  range. 

explanation for this  hypersensitivity is exposed  by  examining  the  process 
of error  evaluation.  Multiplication of the  stiffness  matrix by  the  displacements 
is intrinsically  a  differencing  operation. . A s  deflections increase, this incu s 
critical arithmetic. For example, in problem 2 deflections  of  the order of 10 
must  be  differenced to develop load components of the order of 10'. Therefore 
seven  digits of accuracy  are  lost in the  process.  Since  only 8.2 digits  are 
carried when p = 27, the  accuracy  of is a  maximum of 1 .2  digits.  Since  the 
last  digit  of  the deflections  involves  truncation error, the  residual  error  is 
non-zero. Its exponent is dependent on the  exponent for the  deflections  and  the 
calculation  precision. The exponent  of  the  error  to  the  base 10 cannot  be  less 
than about 8.2 less than  the  deflection  exponent,  which has little to  do with 
analysis error. Thus the  total  residual  error  does  not  reflect  the  accuracy of 
deflection  predictions  and  cannot  be  expected  to  correlate  with  it. 

7 

These data show that  large  residual  errors  may  disguise a relatively  accurate 
analysis ( 6  digit  accuracy for the 8 digit  precision  calculation  in  problem 2 ) .  
On  the  other hand, small  residual  errors can be  expected  to correlate  with  solution 
accuracy.  This is illustrated by comparing the errors  indicated by the  two  back 
substitution  error  measures C 83 and e& . 

Figure 2 facilitates  this  comparison. It displays  plots of back  substitution 
residual  and  solution  errors  for  two  sets of problems from Table V. The  continuous 
curves  pertain  to  the  cantilevered  beam  problems. The dashed  curves  are for 
problems 4 ,  10, 16, 24 ,  28, and 31. Since  the  solution  error  measure  is  based 
on double  precision  analysis it  must  be  more  accurate  in predicting  error  than 
the  residual.  For  the  cantilevered  beam problems  poor correlation is obtained 
between  this  measure  and  the  error  indicated by  the residual.  This  poor  correlation 
is attributed to the critical  arithmetic  involved  in  the  evaluation of the  residual 
error  measure.  When  t.he  sparsity  of  the stiffness  matrix is decreased (as for 
the  dashed  curve  cases)  good  correlation is obtained  between  the  error  measures. 
Even  these  curves  exhibit a tendency  to  lose  their parallelism as the  number  of 
equations  increases.  Since  an  increase  in  the  number  of  equations  results in 
increasing  deflections,  this  deterioration of the  residual  measure  echoes the 
increasing  criticality of arithmetic  in  the  error  evaluation. 

Because  of  the  infidelity of the  residual  error measures, the  sum of the 
errors  does not compare  with  the  total  error.  This  disagreement  with Eq. (2-19) 
is due to  the  large  error in  evaluating eT. Despite  this  disagreement,  the'residual 
measures  are  expected  to  indicate  errors for other  than the cantilevered  beam 
problems in these  tests.  For  the cantilevers, they provide  exaggerated  estimates 
of errors. 

The cantilevered  beam  problems can also  be used  to illustrate the relation 
between  manipulation  and  discretization  error.  Consider  that  the  beams  are 
loaded  with a  uniform  pressure g=$ , couples of value Q at each joint  and a  tip 
load of magnitudegah. Then the  tip deflection is given by 2 
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The difference  between  Eqs.  ( 3 - 2 )  and ( 3 - 3 )  d e t e r m i n e s   t h e   d i s c r e t i z a t i o n  
e r r o r .   T h i s   d i f f e r e n c e  i s  n e v e r   z e r o ,   r e g a r d l e s s   o f  how l a r g e  N becomes.  The 
r e l a t i v e   d i s c r e t i z a t i o n   e r r o r ,   h o w e v e r ,   d i m i n i s h e s   t o   z e r o   m o n o t o n i c a l l y   a s  
J i n c r e a s e s   t o   i n f i n i t y .  

F igu re  3 provides  a p l o t  showing t h e   t o t a l ,   m a n i p u l a t i o n ,  and d i s c r e t i z a t i o n  
e r r o r   f o r   t h e s e  beams. The t o t a l   e r r o r  i s  d e p i c t e d  by the   con t inuous   cu rve .  
Th i s  i s  obta ined  by compar ing   compute r   gene ra t ed   de f l ec t ion   p red ic t ions   w i th  
those   o f  Eq. ( 3 - 3 ) .  The m a n i p u l a t i o n   e r r o r s  are t h o s e   c i t e d   i n   T a b l e  V I .  The 
d i s c r e t i z a t i o n   e r r o r  i s  found  from  Eqs. ( 3 - 3 )  and ( 3 - 2 ) .  

The t o t a l   e r r o r   r e f l e c t s  a mono ton ic   dec rease   o f   d i sc re t i za t ion   e r ro r   and  
monotonic   increase   o f   manipula t ion   e r ror   as   the  number o f   e q u a t i o n s   i n c r e a s e s .  
The in t e rac t ion   o f   t he   e r ro r   componen t s   p roduces  a t o t a l   e r r o r   c u r v e  of q u a d r a t i c  
f o r m .   F o r   t h e s e   p r o b l e m s ,   t h e   m a n i p u l a t i o n   e r r o r   r e d u c e s   t i p   d e f l e c t i o n   p r e d i c t i o n s  
and d i s c r e t i z a t i o n   p r o v i d e s   o v e r e s t i m a t e s .   T h u s ,   t h e   t o t a l   e r r o r  i s  expec ted   t o   be  
z e r o   f o r  two p rob lem  s i zes .  The c u r v e   o f   t o t a l   e r r o r  shows bo th   o f   t hese   occu r  
a t  more than  1000 e q u a t i o n s .   D i s c r e t i z a t i o n   e r r o r   d o m i n a t e s   t h e   t o t a l   e r r o r  
t r e n d   u n t i l   t h e  number of equat ions   exceeds  800. 

Error  Magnitudes 

To i n t e r p r e t   e r r o r   m a g n i t u d e s ,   t h e i r   v a l u e s  w i l l  be  compared  with  the maximum 
e r r o r s   a s s o c i a t e d   w i t h   t h a t   s i m p l e  series s u b t r a c t i o n   u s e d   i n   R e f .  1, page 2 1 .  The 
sub t r ac t ion   ope ra t ion   cons i s t s   o f   pe r fo rming  a number of s u b t r a c t i o n s ,  Nc , s u c h   t h a t  
t h e   r e s u l t  o f   each   subt rac t ion   y ie lds   an   answer   which  is o p p o s i t e   i n   s i g n   t o   t h e  
next  component t o  be   sub t r ac t ed .  

Reference 1, Sect ion  2 ,  shows t h a t   t h e   e r r o r   i n   t h i s   o p e r a t i o n ,  when the   wors t  
number r e p r e s e n t a t i o n  is used,  i s  g r e a t e r   t h a n   f o r   a n y   o t h e r   " s i m p l e   a r i t h m e t i c "  
operation.  Moreover,  i t  has  a l a r g e r   e r r o r  bound t h a n   v e c t o r   m u l t i p l i c a t i o n .   S t u d y  
of t h i s   o p e r a t i o n   i d e n t i f i e s   a n   e r r o r  bound. S i n c e   t h i s  bound i s  both  dependent on 
the   sequence   of   a r i thmet ic   and   the  number r e p r e s e n t a t i o n ,  i t  i s  e x p e c t e d   t o   d e f i n e  
an  upper  bound f o r   e r r o r   f o r   c o m p u t e r   c a l c u l a t i o n s ,   i n d e p e n d e n t  of t h e   a n a l y s i s  
involved . 

Reference 1, page   21 ,   conc ludes   t ha t   t he   e r ro r  must  be less than  

e,. = b" Nc ( 3 - 4 )  

where e is  t h e  maximum r e l a t i v e   e r r o r ,  and m 

Nc i s  t h e  number c a l c u l a t i o n s .  
Equation ( 3 - 4 )  i s  an   approximat ion   in   the   reg ion   where   e r ror   g rowth  i s  maximum. 
When Nc < b P 2 ,   t h e  c r i t i ca l  number o f   c a l c u l a t i o n s ,   t h e   e r r o r  may exceed   t ha t  
given by Eq. ( 3 - 4 ) .  When Nc- b p ,   t h e   e r r o r  bound w i l l  be less than   t ha t   o f  
Eq. ( 3 - 4 1 . .  Equat ion ( 3 - 4 )  is an   approximat ion   in   the   reg ion   where   e r ror   g rowth  i s  
maximum. Er ro r s   f rom  each   e r ro r   sou rce  w i l l  be  compared  with  those of Eq. ( 3 - 4 ) .  

Decomposition  Diagonal  Errors (e,) 

F igu re  4 i s  a l o g - l o g   p l o t  o f  
t es t  problems with non-ze ro   e r ro r .  
number of   equat ions.   Dashed  curves  

I 

t h e   d e c o m p o s i t i o n   e r r o r   f o r   t h e  24 s u b c r i t i c a l  
Each  continuous curve a p p l i e s   t o  a p a r t i c u l a r  
d e f i n e   c o n t o u r s  of equa l  matrix d e n s i t y .  

18 
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These data  show  decomposition  diagonal  errors: 

1. Increase with increases in the  number of calculations for a given 
matrix order, 

2. Increases for a given matrix  density  as  matrix order'increases, and 
3.  Decrease for a given  number of calculations  as  matrix  order  increases. 

The short  line segment  shows the slope that  the curves would take if the  error 
were  directly  proportional  to  the  number of calculations.  The  slope of both the 
continuous and  dashed curves are  always  less  than  the  segment slope. The  error 
magnitudes  indicated  in Fig. 4 are of those  given by  Eq. ( 3 - 4 )  for these 
subcritical  problems. 

Forward  Substitution  Errors (e Bl).- Figure 5 is a log-log plot of the  forward 

substitution  errors for the 32 subcritical problemsb 'Each continuous  curve  applies 
to a  particular number of  equations.  Dashed curves define  contours of equal  matrix 
density. The circled  points  designate  cantilevered  beam  problems. 

-~ 

These  data  show  forward  substitution  errors: 
1. Decrease then increase  with  increases in the  number  of  calculations 

for a given  matrix order, 

2. Increase for a  given  matrix  density  as  matrix order inceases, and 

3 .  Increase for a given  number of calculations as matrix  order  increases. 

Indicated  error  magnitudes  are  less  than 10-5of those  given by  Eq. ( 3 - 4 ) .  
Note  that  the cantilevered  beams  display  smaller  errors  than  other  problems. 

Figure 6 provides  plots of forward  substitution  errors  against the number  of 
equations.  Continuous  curves  connect  problems  with  the  same  matrix  joint  bandwidth. 
One set of problems  consists  of  the  cantilevered  beams  (joint  bandwidth = 2). The 
second  set includes  errors of problems 4 ,  16, 2 4 ,   2 8 ,  and 31. (Joint  band = 3 ) .  
These  data  show  that  though  the substitution errors  increase  linearly  with  matrix 
order for the cantilevered  beams  the  growth is more  rapid  when  the  bandwidth 
is larger. 

Diagonal  Division  Errors ( e  and Es).- Since  the  maximum  relative  error  in  division 

is b-'+l, the  maximum  value for the diagonal  division  error for these  tests  is 
1.492 x  Assuming it  is  equally  likely  that  the  error  is zero or one in  the 
last bit,  the  expected  error i s  7 . 4 6  x lom9. 

B2 

The 24 experiments  reported  in  Table V (omitting  the  cantilevered  beam  cases) 
exhibit an average  diagonal  division  error of 6.18-9. Considering  both  sets of 
loading  conditions,  the  range  of  the  error  varies from 5.61-9 to 8.14-'. No 
concerted  trend for errors to  increase  with  matrix  order occurs, or would  be 
expected.  Similarly,  error  magiitudes  are  independent of matrix  population 
density . 
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The set of  problems  representing  cantilevered  beams  show  division  errors 
that are  much  smaller  than the average. kreover, the errors decrease  monotonically 
with  problem  size. This occurs  because half the  diagonals  are  perfect  numbers 
and  -result in no residuals  though  the  denominator  norm is increased  nevertheless. 
Since  this  is  unrepresentative,  these errors are  disregarded in forming the average 
and noting  trends  above. 

For all problems,  singularity  ratios had a ninimum value of 0.125. This 
confirms  the  adequacy  of  equation  sequencing in the  analysis. It indicates  the 
loss of a maximum  of  the  last  three  binary  places in the  mantissa due  to numerical 
singularity. Thus, the  maximum  relative  error is the determinant  of the stiffness 
matrix, and  hence in  the answers, due  to numerical  singularity  is 0.996 x 
The  expected  error  is  half  this  amount. 

Back  Substitution  Errors (eglR) .- Fig-Jre 7 is a log-log nlot  of  the  back  substitution 
errors for th2 32 subcritical problems.  Each continuous  curve  applies to a partic- 
ular  number  of  equations.  Dashed  lines de.fine contours of equal  matrix  density. 
Residual  errors  assoeiated  with  cantilevered  beam  problems are two orders of magni- 
tude greater  than  those for the other problems, for the same  number  of calculations, 
so these  results for cantilevers  do not appear on the  graph. 

These  data  show  back  substitution  errors: 

1. Decrease  with  increase  in  the  number  of calculations for a given 
matrix order, 

2. Increase for a given  matrix  density  as  matrix  order increases, and 

3 .  Increase  for a given  number of calculations  as  matrix  order  increases. 

Error  magnitudes  indicated  in  Fig. 7 are 10 of those given by  Eq. ( 3 - 4 ) .  - 3  

Relative  Importance of  Error  Sources.- The data in Table V indicates that  the sources 
of  error  in order of decreasing  error magT-titude are back substitution, forward sub- 
stitution,  decomposition,  and  division errors. This  ordering is deceptive, however, 
because  the  implications  of a given  magnitude  error  depend  on  error  source.  More- 
mer, this evaluation  omits  consideration of inherited errors.  An examination of  the 
cantilevered  beam  problems can provide  some  of  the  desired  perspective. 

Figure 8 shows  the  tip  deflection error, due to each  error  source, as a 
function  of the number  of  equations  for  the set of  cantilevered  beam  problems. 

The displacement  error  due  to  inherited  error  is a plot  of 

where e is  the relative  error  in  tip deflection, 
N is the number  of equations, 
b' is the relative  error  in  the  diagonal  stiffness  matrix 

i 

coefficients. X =  2-27 
This equation  is  developed  from data in Table VI of Ref.  1.  It is assumed  that 
every diagonal of the  stiffness  matrix has an  error  of one part in the  last  binary 
position  due to addition of element  stiffness  matrices. 
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displacement  error  due  to  decomposition  error  is  also  defined  by .the function 
Eq. ( 3 - 5 ) .  In this' case, however Y is  taken a s -  the  maximum  value  of decem- 
error  measured in the 32 tests: d= .224 x 10-7. (This  value is more  realistic 

than  the zero error  of  cantilevered beams). 

Since  the  forward  substitution  error  implies  an  error  in  the  loading  and  the 
equations  are  linear, the consequent  error in tip  deflections  are taken to be 
equal to the  measured  forward  substitution  errors.  These  result  in  the  lowest 
curve on the figure. 

The effect of diagonal  division  error is to  simulate  an  error in the determinate 
of the  stiffness matrix. Consequently,  these  errors  also  are direct measurements 
of implied  solution  errors.  These errors, however,  are so small  that  they do not 
appear in  the  range  plotted. 

Back  substitution  errors  directly  effect  predicted  displacements. Thus these 
solution  errors,  as  measured,  are  plotted for the  comparison. 

Figure 8 shows that  the relative  importance of errors based on solution 
implications is, in  decreasing order of  importance,  decomposition,  inherited, 
back  substitution,  forward  substitution,  and  diagonal  division.  Decomposition 
and inherited  errors  are  much  more  important  than  substitution  errors. If inherited 
errors are dominant, Eq. ( 3 - 4 )  (which is  based on a simple  beam  problem)  may be 
used  to furnish a guide  on  the  relation of error  and  precision. 



Sec t ion  4 

TESTS OF CRITICAL SIZE PROBLEMS 

Tests t o   e v a l u a t e   t h e   s i g n i f i c a n c e   o f   p e r f o r m i n g  more than  b c a l c u l a t i o n s  
P 

r e q u i r e   t h e   u s e   o f  a d i f f e r e n t   c o m p u t e r   c o d e .   T h i s   s e c t i o n   d e s c r i b e s   r e s u l t s  
of a d d i t i o n a l   t e s t s   t o   e v a l u a t e   t h e  effect  o f   c h a n g i n g   d e t a i l s  of t h e   s o l u t i o n  
p r o c e s s   t o  fac i l i t a te  cr i t ical  r o b l e m   s o l u t i o n   a n d   e r r o r   r e s u l t s   f o r  a set of 
problems  involving  from x 10 B t o  40 x 10 c a l c u l a t i o n s .  6 

Modified  Analysis  Approach 

Ef f i c i en t   da t a   hand l ing   r equ i r e s   mod i fy ing   t he   s equence  of a r i t h m e t i c   f o r  
so lv ing   l a rge   p rob lemfus ing   t he   a lgo r i thm  de f ined  by Eqs. ( 2 - 1 )   t h r o u g h   ( 2 - 6 ) .  
D e t a i l s   o f   t h e   d a t a   h a n d l i n g   f o r   t h e   c r i t i c a l  s i z e  problems i s  d e s c r i b e d   i n  
Ref.  3 .  The fo l lowing   changes   to   the   sequence  of p e r f o r m i n g   t h e   c a l c u l a t i o n s  
d e s c r i b e d   i n   S e c t i o n  2 a re   i nvo lved :  

1. During  decomposition, sum a l l  s u b t r a c t i v e  terms b e f o r e  making a 
s ing le   sub t r ac t i , on   t o   mod i fy   t he  k'jk e l e m e n t   f o r   a l l   e l e m e n t s   i n  
rows up t o  row . 2 

2.  Dur ing   decomposi t ion   do   no t   d iv ide   e lements   in   the  row by t h e  
r e c i p r o c a l  of t he   d i agona l .  

3 .  No changes.  

4 .  and 5.  S o l v e   d i r e c t l y   f o r  by sub t r ac t ing   componen t s   o f   t he   i nne r  
p roduc t   f rom  the   l oad ing   kmponen t   and   d iv id ing   t he   r e su l t  by t h e  
d iagonal .  

6 .   So lve   fo r . each  x i  by sub t r ac t ing   componen t s   o f   t he   i nne r   p roduc t  
vec to r   f rom  the  component  and m u l t i p l y   t h e   r e s u l t  by be". 

d 
These  minor   changes  resul t   in  no i n c r e a s e   i n   t h e  number o f   n o n - t r i v i a l  

c a l c u l a t i o n s .  They invo lve   on ly   minor   changes   i n   t he   s equence   o f   a r i t hme t i c .  
The  change  represented by l , above ,  would  be  expected  to   reduce  manipulat ion 
e r r o r .  The  changes  represented by s t e p s  2 through 6 may i n c r e a s e ,   d e c r e a s e ,   o r  
n o t   a f f e c t   e r r o r .  

Manipulation  Error  Measurements 

Only two m e a s u r e s   a r e   u s e d   i n   t h e   c r i t i c a l   s i z e   p r o b l e m s .  
The f i r s t  measure i s  t h e   n u m e r i c a l   s i n g u l a r i t y   t e s t .  The  second  measure i s  a 
s o l u t i o n   t e s t   b a s e d   o n   c o m p a r i n g   t h e   c a l c u l a t e d   d e f l e c t i o n s   w i t h   t h e   e x a c t   s o l u t i o n  
of   the  computer   difference  equat ions.   This   measure  takes   the  form 

where e' i s  t h e   r e l a t i v e   d e f l e c t i o n   e r r o r ,  
Ai i s  a d e f l e c t i o n  component,  and 

the s u b s c r i p t  E means "exac t "   and   t he   subsc r ip t  C ,  %zalcu la ted . l l  
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h The  Euclidean  norm is used  as  a  measure of the  numerator  and  denominator  of 
Eq. (4-1) for most  test  problems.  For  cantilevered  beam problems,  the  maximum 
error  component  (tip  deflection) is used  herein. 

For  most problems,  a  new  analysis  procedure  was  adopted so the  exact  solution 
would be known. This process  involved the following  steps: 

1. 

2. 

3 .  

4 .  

Assume  the  displacements in the  form of perfect  numbers.  For  the 
analyses  three  sets of displacements are  assumed. The first, 
involves  unit  displacements for every & ; the second, A 
f;;;YeA unit  displacements in odd  numbered  equations only, and  the 

, has unit  displacements in even  numbered  ,(moment) equations 
only. 

Multiply  the stiffness  matrix  times  the  assumed  displacements. All 
the stiffness  coefficients and  assumed displacements  are  perfect 
numbers. In addition, each  component  of  the  multiplication  solution 
vector  will  have  a  value  less than 134,217,727 (the maximum  number 
represented in the  mantissa when p = 27, b =2). Therefore, the 
product  will  be taken  with  zero  error. 

Solve  the load-deflection equations  using  the  loadings  from  step 2. 

Calculate  the  error  using  the  vectors of step 1 as  the  exact  solution 
and those  of  step 3 as  the calculated. 

Critical  Test  Problems  and  Results 

The  two sets of  test  problems  and  test measurements  are  summarized in 
Tables  VI1  and  VIII. 

Table VI1 cites problem  parameters  and  error  measurements for the  set  of 
problems  to evaluate the effect of-  the changes in  the solution  process.  These 
problems  represent  uniform  cantilevered  beams  with  various  numbers  of  joints  and 
loadings. Data in rows 1 through 5 of this  table  define  the  magnitude  of  the 
numerical  analysis problem. Data in  rows 6 through 9 relate to analysis of these 
systems  using the analysis  methods  described in  Section 2. Rows 10 through 13 
cite results  using  the  manipulation  error  measurements and analysis  methods  just 
described. 

Table VI11  lists  data  for  mixed  system  tests  to  evaluate  errors  when  the  number 
of calculations  approaches  and  exceeds bp, the  critical  number.  Again  rows 1 to 5 
cite problem  size  data.  Rows 6 through 8 list me~asured  relative  deflection  errors 
for the  three  loadings of interest. 

Error  Magnitudes' 

Analysis  of data in rows 6 through 9 of Table VI1 shows  that  minor  changes 
in  the  arithmetic  sequence can have a  significant  effect on error magnitudes. 
Row 8 gives  the  tip  deflection  relative  error  using  the  modified  analysis  approach. 
Row 9 lists  the same type  errors  using  the  analyses  approach  described  on  page 4 .  
Comparison  of  these two rows of data shows the  modified  approach  has from 1.33 
to 1.40 times  the  error  of  the  standard. For these  problems,  decomposition  is 
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Row 
No. 

1 

2 

3 

4 

5 

6 

- 

7 

8 

9 

10 

11 

1 2  

13 

Problem 

No. of Equations 

Density, '2 

NC , decomposition 
Nc,  substitutions 

Nc,  total 

Exact  Defl. 
Eq.  ( 3 - 2 )  

Calc.  Def 1. 

e 

ex(Table V) 

Density, '2 

e 

X 

e 

e 

A 

600 

1.16 

6 .   7 5 3  
3 

4 
7.20 

1.39 

2.052052459 

2.05204144 

5 .   42 -6  

3 .  88-6 

1.82 

2 .  88-3 

4 , 0 2 - ~  

7 .  2 T 5  

Table VI1 

Solution  Process  Test  Problems 

B 

700 

0 .99  

7 .83  3 

8 .   413  

1 .62  4 

3.79450877' 

3.79448570 

6 .08-6  

4 .37-6  

1.56 

4 . 0 5 - ~  

5.44-3 

9. 8 Y 5  

C 

800 

0 .87  

9 .oo 3 

9 . 6 1 ~  
4 1.86 

6.46409314' 

6.46404833' 

6 .93-6  

5.   23-6 

1.37 

5.11-2 

7 .08-2 

1. 25-4 

1000 

0.70 

1.13 

1; 20 

2.33 

1.5750145810 

4 

4 

4 

1.57500073 10 

8 .   78 -6  

6 .   5 8 - 6  

1600 

0.44 

1.80 

1.92 

3.72 

1.02912373'' 

4 

4 

4 

1.02911070 10 

1. 2 T 5  

F 

2000 

0.35 

2.25 

2.40 

4.60 

2 .  510058311 

4 

4 

4 

2.50996478'' 

3 .   7 4 - 5  

*Exponents  imply a base of ten, e.g. 8 .  = 8.0 x 10 
- 6   - 6  



Row 
No. 

1 

- 

2 

3 

4 

5 

6 

7 

8 

Problem 

No. of Equations 

Density, X 

Nc, decomposition 

substitutions 
NC 

Nc, total 

e m  

eA 

eA 

G 

200 

5.16 

6, 115 

4.18 4 

6. 535 

8.06-6 

2 . 0 ~ ~  

8.74-6 

Table VI11 

Critical  Size  Test  Problems 

" 

H 

300 

29.0 

6.115 

5.24 4 

6.  635 

1. 61-5 

3. 9 Y 5  

1.66-5 

I 

40 0 

15 .O 

3.78 

4.79 

4.26 

5 

4 

5 

3.55-5 

8. 56-5 

3. 5 Y 5  

J 

40 0 

72.5 

1 .OP 7 

2.  345 

7 1.03 

4 .  2Y5 

1.10-~ 

5.03-~ 

K 

500 

9.90 

3.15 

4.89 

5 

4 

3. 645 

6. 74-5 

1. 54-4 

5. 

L 

600 

3.13 

5.32 

2.15 

5.54 

4 

4 

4 

4.44-4 

7. 73-4 

8.72-4 

M 

800 

42.0 

2.  477 

5. 405 

7 2.52 

1.08-~ 

2.91-~ 

1. 4om4 

N 

1200 

- 

29.3 

3.94 

8.45 

4.02 

7 

5 

7 

1.31"~ 

2,51-~ 

1.20-~ 

W 
kJ 
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is  exact. T h e r e f o r e   t h e   d i f f e r e n c e   i n   s o l u t i o n   d e t a i l s   i n v o l v e   o n l y   t h o s e   i n   t h e  
s u b s t i t u t i o n s .  It is concluded   tha t :   an   a lgor i thm  must   cons isbent ly  show  more than  
a f i f t y   p e r c e n t   r e d u c t i o n   i n   e r r o r   t o   b e   c o n s i d e r e d  a s igni f icant   improvement .  

Comparing t h e   d a t a   i n  rows 8 and 11 through 13 of Tab le  VI1 with t h a t   i n  
row 8 l e a d s   t o   t h r e e   a d d i t i o n a l   c o n c l u s i o n s :  

1. E r r o r   m a g n i t u d e s   a r e   s e n s i t i v e   t o   t h e   c h o i c e   o f   l o a d i n g .   T h i s  
s e n s i t i v i t y  i s  r e f l e c t e d  by a  maximum f a c t o r  of 4 1 . 3  between 
e r r o r s   i n  the las t  three rows. 

2. The r e l a t i v e   e r r o r   f o r  two load ings   canno t   be   added   t o   p red ic t  tlie 
e r r o r   f o r   t h e  sum o f   t he   l oad ings .  If t h i s  were p o s s i b l e ,  would 
b e   e q u a l   t o  eA +el.& . T h i s   r e s u l t   r e f l e c t s   t h e   n o n l i n e a r i t y  
o f   e r ro r   w i th   l oad ing   cond i t ion .  

ef4 

3 .  The c a n t i l e v e r e d  beam r e i n f o r c i n g   l o a d i n g s   e v o k e s   r e l a t i v e l y   l a r g e  
e r ro r s .   Compar ing   e r ro r s   o f  row 6 and  row 11 i n   T a b l e  V I 1  shows 
t h e   r e i n f o r c i n g   l o a d i n g   ( r o w  6)  i n c u r s  a minimum of a f a c t o r  of 
times t h e   e r r o r   o f   t h e   w o r s t   a l t e r n a t e   l o a d .   T h i s   r e s u l t   c o n f i r m s  
a conclusion  of   Ref .  1. 

An a n a l y s i s   o f   d a t a   i n   T a b l e  V I 1 1  con f i rms   t he  f i r s t  two conclus ions   above .  
Row 7 d i s p l a y s   e r r o r s   t h a t   a r e  a maximum of   2 .7  times t h o s e   i n   e i t h e r  row 6 o r  8 .  
The sum o f   t he  row 7 and 8 e r ro r s   does   no t   equa l   t he   measu red  row 6 e r r o r .  

F igure  9 d i s p l a y s   t h e   m e a s u r e d   e r r o r s   a s  a f u n c t i o n   o f   t h e  number  of c a l c u l a t i o n s .  
The bound g iven  by Eq. ( 3 - 4 )  i s  a l s o  shown. T h i s   p l o t  shows  measured  errors   are  
severa l   o rders   o f   magni tude   be low  the   e r ror   bound.   There  i s  no i n d i c a t i o n   t h a t  
e r r o r s   i n c r e a s e   d r a m a t i c a l l y  when t h e   c r i t i c a l  number o f   c a l c u l a t i o n s  i s  exceeded.  
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Section 5 

PRODUCTION CODE ANALYSIS CHECKS 

The error  measures  used in this  study  were  defined  to  discriminate  among 
error  Sources  and  to study problems of error measurement for manipulation  errors. 
Data from the  test problems  have  identified  the  adequacy  of  the  measures. In 
this  section  particular me.asures  are recommended and others rejected  for  use in 
a  production  computer code for  structural  analyses. A l l  of  these checks should 
involve  special  coding  to  add  them to an  existing  computer  code. Use of matrix 
manipulation  instructions to  evaluate  the measures  will  result in extra  passes  of 
data through core and  thus  incur unnecessarily large analyses time  penalties  on  the 
computer. 

Recommended  Measures 

Table IX lists  the  recommended  error  measures in the order in  which they 
would  arise in the usual  analysis.  Each  of  these  checks  requires few calculations 
compared  with  those  of  the  solution  process.  The set of checks is  intended  to 
check  calculations in critical  errors  and  provide  a  measure  of the accuracy  of 
displacement  and  stress  predictions. 

The  "num5er  of  calculations  check"  is  proposed to  eventually  avoid equation 
solution  if the  probability  of  success is low. The  idea  is  to  include  this 
calculation in  all analyses in order  to obtain statistical  data  relating  problem 
size  to  indicated  deflection  error and computer  precision.  For  this  purpose, 
the  number of  calculations can probably  be  satisfactorily  estimated  by 

where  f.  is  the  number  of  degrees of freedom at a joint i 
i$ is  the number  of  joints, with higher joint  nilmber  than i, 

which  are  elastically  coupled  to  joint  i  during  the  decomposition 
of row i. 

Wi is easily  evaluated  from  the  topology  of  the  structure. The first  term in Eq. 
(5-1) estimates  the  total rlumber  of decomposition  calculations and  the second, 
substitution  calculations. Ths first term  in Eq. (5-1) estimates non-trival 
calculations in  decomposition. The second  estimates  calculations in  substitution. 

~ The  numerical  singularity  check  is  recommended  to  insure  that  critical arith- 
metic  does  not  destroy  accuracy.  Reference 3 ,  page 4 2 - 4 3 ,  shows that  if  this  test 
indicates  that  large  errors  may arise, resequencing of  the  equations can usually 
eliminate  the  difficulty. 

The positive  definite  check  provides  an  overall  check on the reality  of  the 
stiffness model. If any of  the diagonals, Dii, are  less than zero it  is  implied 
that at least  one  st.ructura1 deformation  pattern  can occur in which  the principle 
of  conservation  of  energy is violated.  This may  not identify  an  unacceptable 
mathematical  model  (for  some  geometries  the  Hrennikoff  lattice  exhibits  this 
deficiency ) but  it signals  the  possibility  of  unrealizable  structural  response 
predictions. If the diagonals are relative zeros, this  test  will  identify  the 
existence  of  kinematic  instability  and  may  be  extended  to  differentiate  between 
active  and  passive  instabilities5. 

4 
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Table IX 

I 

Measure 

Number  of 
Calculations 

Numerical 
Singularity 

Positive 
Definiteness 

Energy 
Error 

Stress 
Precision 

Recommended  Error  Measures 

Function How Evaluated 

Indicate  problem  size  and E q .  ( 5 - 1 )  
desirability of cutting  run 

Sense  critical  arithmetic E q .  ( 2 - 8 )  
during  decomposition 

Insure  that  deformations  Test D;;+ 0 
require  work 

Evaluate  norm of error 
predicted 

Eq. ( 2 - 1 6 )  

Define  error in stress  Eq. ( 5 - 2 )  

When  Evaluated No. of Calcs. 

During 
preprocessing 

During 
decomposition 

During  back 
substitution 

During  back 
substitution 

When  stresses 
are  evaluated 

4N 

2N 

N 

5N+1 

6N 



The energy   e r ror   measure   p rovides  a low c o s t   m e a s u r e   o f   t o t a l   a n a l y s i s  
( d e f l e c t i o n )   e r r o r .   T h i s   s t u d y   h a s  shown t h a t  i t  c o r r e l a t e s   w i t h   a n a l y s i s  
e r r o r  while a v o i d i n g   c r i t i c a l   a r i t h m e t i c .  A t  t h e  same time, i t  ref lects  t h e  
l o a d i n g   o f   i n t e r e s t   a n d   t h e   a s s o c i a t e d   s t r u c t u r a l   r e s p o n s e .  When i n c o r p o r a t e d  
i n   t h e   b a c k   s u b s t i t u t i o n   p r o c e s s ,  i t  r e q u i r e s  no s p e c i a l   d a t a   h a n d l i n g  o r  
t r a n s f e r s .  

The stress p r e c i s i o n   c h e c k ,  when used   w i th   t he   ene rgy   e r ro r   measu re ,   pe rmi t s  
d e f i n i n g   t h e   r e l a t i v e   a c c u r a c y   o f  s t ress  p r e d i c t i o n s .   T h i s   c h e c k  i s  d e f i n e d   a s  

where e G . i s   t h e   r e l a t i v e  stress p r e c i s i o n   e r r o r   f o r   e l e m e n t  i ,  
k; i s  t h e  s t i f f n e s s   m a t r i x   f o r   e l e m e n t  i ,  
h;is t h e  subse t  of  d i s p l a c e m e n t s   f o r   t h e   j o i n t s   o f   e l e m e n t  i ,  and 
E i s  the  t o t a l  number  of  elements. 

I f  c;’is nea r   ze ro  no s i g n i f i c a n t   e r r o r   h a s   b e e n   i n c u r r e d   i n   d i f f e r e n c i n g   d e f l e c t i o n s  
t o   e v a l u a t e  s t resses .  I f  6::; i s  nea r  1, a s  many d i g i t s   h a v e   b e e n   l o s t   i n  s t ress  
e v a l u a t i o n   a s   t h e r e   a r e   n i n e s   f o l l o w i n g   t h e   d e c i m a l   p o i n t .  The t o t a l   r e l a t i v e   e r r o r  
i n  stress p r e d i c i t i o n s   c a n  be determined by adding  ea-- t o   t h e   r e l a t i v e   e n e r g y   e r r o r .  

Cons ide r   aga in   t he   can t i l eve red  beam.  Then Table  X summarizes p e r t i n e n t  
e r r o r   d a t a   f o r   f o u r  se t s  o f   equa t ions .  Each row o f   t h e   t a b l e  l i s t s  e r r o r   d a t a  
f o r   o n e   c a s e .  To i l l u s t r a t e   t h e   t h i n k i n g   i n   d e t e r m i n i n g   t h e   a c c u r a c y   o f  s t ress  
p r e d i c t i o n s ,   c o n s i d e r   t h e   s e c o n d  row of   da ta .   Calcu la t ions   were   per formed  wi th  8 .3  
d i g i t s   p r e c i s i o n   ( p  = 2 7 ) ,  so e, ,  i m p l i e s   l e s s   t h a n   o n e   d i g i t  loss o f   a c c u r a c y   i n  
c a l c u l a t i n g   d e f l e c t i o n s .   S i n c e  i s  one, t o   s i x   d i g i t s ,   a b o u t   s i x   d i g i t s  of 
p r e c i s i o n   a r e   l o s t   i n   s t r e s s   p r e d i c t i o n s .   C o m b i n i n g   t h e   e r r o r   l o s s e s ,   t h e   t o t a l  loss 
i s  a b o u t   s i x   d i g i t s   o f   a c c u r a c y .   T h e r e f o r e ,   o f   t h e  8 .3  d i g i t s   o f   p r e c i s i o n ,   a b o u t  
two d i g i t s  of accuracy  remain.  

The ac tua l   accuracy  i s  l i s t e d   i n   t h e   s e c o n d  column of  Table  X .  Th i s  
i s  based on t h e  number o f   d i g i t s  of  a c c u r a c y   i n   e s t i m a t e   o f   t h e   a p p l i e d   l o a d  
found by t a k i n g   t h e   p r o d u c t   o f   t h e   s t i f f n e s s   m a t r i x  and t h e   c a l c u l a t e d   d e f l e c t i o n s .  
Comparing t h e   d a t a   i n   t h e   s e c o n d  and l a s t  columns  shows t h a t   a c c u r a c y   p r e d i c t e d  
by Eq. (5-2) cor re sponds ,wi th   t he   accu racy   o f   e l emen t   gene ra l i zed   fo rce   p red ic t ions .  

Rejected  Measures 

Table  X I  c i t e s  seve ra l   e r ro r   measu res  whose use  i s  r e j e c t e d .  I n  t h i s   t a b l e ,  
cos t ly   measu res   a r e   t hose   wh ich   r equ i r e   a s  many c a l c u l a t i o n s   t o   e v a l u a t e   a s  
a n a l y s i s   o f  an a d d i t i o n a l   l o a d i n g .  Very c o s t l y   m e a s u r e s   r e q u i r e   a s  many c a l c u l a t i o n s  
a s   t h e   t o t a l   e q u a t i o n   s o l u t i o n   p r o c e s s .  

T e s t s   r e p o r t e d   h e r e   p r o v i d e   t h e   b a s i s   f o r   r e j e c t i n g   r e s i d u a l  and s o l u t i o n  
measures .   Reference 1 r e   o r t s   t h e   i n a d e q u a c y   o f  Maxwell r e c i p r o c i t y  t e s t s .  
Reference 1 and  Wi lk insong  repor t   the   pess imism  and   unre l iab i l i ty   o f   condi t ion  
number measures. 



Table X 

Stress   Measured  and  Predicted  Accuracyk 

Measured   Measured   Er ror   Parameters   Pred ic ted  
D i g i t s  i n  T i p  D i g i t s   o f  

- N Load Res idua l  el-: - IIAII" I I  Ldl" Accuracy 

6 6 4 .65-1° 2 .OO 2.00 1-2 6 

50 2 3  .25-8 1.56 2.00 1-2.71-(j 2$ 

100 1 5.46" 2.36 2.06 1-1 . ~ 4 - ~  1 

2 00 0 9 .04-8 3 .G2 3.30 1-1.92-8 0 

$ e,,,, imp l i e s  stresses depend  on  accuracy  of las t  8.3-5 X 3 d i g i t s  
of d e f l e c t i o n s .  

mJ i m p l i e s   e i g h t h   d i g i t  of d e f l e c t i o n  i s  i n   e r r o r .   T h e r e f o r e ,  

p r e d i c t e d   a c c u r a c y  is  2 d i g i t s .  

37 



Table XI 

Measure 

Condition 
Numbers 

Maxwe  11 
Reciprocity 

React  ion 
Check 

Solution 
Error  Check 

Total 
Residual 
Check 

Rejected  Error  Measures 

Basis  for  Rejection 

every  costly to evaluate 
*Lead to  over conservative  error  bounds 
*Insensitive to  loading of interest 

*Costly to  evaluate 
*Unreliable since  it  may  not  be an independent  check 

.Unreliable  since  sample  is  too  small 

.May incur  critical  arithmetic 

#Very costly to evaluate  when  higher  precision  required 

,Cost to evaluate 
.Inherently  incurs  critical  arithmetic 



p Each  of the  measures  recommended  is  reliable  and.requires  few  calculations. 

I! ' 
L! They  are  the  better of the  measures  examined.  Taken  together  they  can  identify 
i critical  numerical  problem  areas  in  the  solution,  define.deflection and stress 

manipulation  error  magnitudes,  and  lead  to  statistical  data  relating  the  computer 
precision  to  accuracy. 
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Sec t ion  6 

CONCLUSIONS 

’These tests h a v e   y i e l d e d   t h e   f o l l o w i n g   c o n c l u s i o n s  on e r r o r s   i n   n u m e r i c a l  
a n a l y s i s   o f  mixed beam sys tems:  

1. The maximum e r r o r  bound based on t h e  number o f   c a l c u l a t i o n s  i s  
v e r y   c o n s e r v a t i v e .  None o f   t h e  t e s t s  gave   decomposi t ion   e r rors  
c l o s e r   t h a n  1 of  t h e   b o u n d ,   f o r w a r d   s u b s t i t u t i o n   e r r o r s   c l o s e r  -5 10 
than  1 b a c k w a r d   s u b s t i t u t i o n   c l o s e r   t h a n  1 No evidence was -5 ’ 10 

-3. 10 3.. 

educed  showing a l a r g e   i n c r e a s e   i n   e r r o r   o c c u r i n g  when  b c a l c u l a t i o n s  
are  exceeded  even  though  the bound i n c r e a s e s   a t   t h a t   l e v e l .  

tJ 

2 .  I n d i c a t e d   e r r o r s   a r e   s e n s i t i v e   t o   e r r o r   m e a s u r i n g   d e t a i l s ,   l o a d i n g  
and d e t a i l s   o f   a r i t h m e t i c .  Use o f   r e s i d l l a l   r a t h e r   t h a n   s o l u t i o n  
e r r o r   m e a s u r e s   c a n  make d i f f e r e n c e s   o f  two o r  more orders   o f   magni tude  
i n   i n d i c a t e d   e r r o r s .  Change i n   l o a d i n g   c a n   r e s u l t   i n   c h a n g e s   i n  
e r r o r   o f   a t   l e a s t   o n e   o r d e r   o f   m a g n i t u d e .  Minor  changes i n   a r i t h m e t i c  
c a n   c h a n g e   i n d i c a t e d   e r r o r s  by fo r ty   pe rcen t ,   even   t hough   t he   fo rmula  of 
t h e   a l g o r i t h m  i s  unchanged. .The e r rors   measures .  are a f f e c t e d  by about  
25 percen t  by chang ing   f rom  the   Euc l idean   t o   t he   abso lu t e   va lue  norm. 

3 .  I n h e r i t e d   a n d   d e c o m p o s i t i o n   e r r o r s   a r e   t h e  more i m p o r t a n t   e r r o r  
sources.   Forward and  back s u b s t i t u t i o n   e r r o r s   a r e   r e l a t i v e l y   s m a l l  
and d i a g o n a l   d i v i s i o n   e r r o r s   n e g l i g i b l e .   T h i s   c o n c l u s i o n   j u s t i f i e s  
use of  t h e  same p r e c i s i o n   a r i t h m e t i c   d u r i n g   d e c o m p o s i t i o n  as used 
i n   d e v e l o p i n g   s t i f f n e s s   c o e f f i c i e n t s .  A mkjor   observat ion is t h a t  
h i g h e r   p r e c i s i o n  negd n o t  be  used i n   e v a l u a t i n g   d i s p l a c e m e n t s   u n l e s s  
stresses are  r e q u i r e d .   N u m e r i c a l   s i n g u l a r i t y   e r r o r s  were:also n e g l i g i b l e  
.in a l l  t h e  t e s t  p rob lems   i nd ica t ing   s a t i s f ac to ry   equa t ion   s equenc ing .  

4 .  Four e r r o r   c h e c k s   a r e  recommended f o r   n u m e r i c a l   a n a l y s i s   o f  
s t r u c t u r e s .  The  number of s o l u t i o n   c a l c u l a t i o n s   s h o u l d   b e   e s t i m a t e d  
d u r i n g   p r e p r o c e s s i n g   t o   y i e l d   s t a t i s t i c a l   e r r o r   d a t a .   N u m e r i c a l  
s ingu la r i ty   checks   shou ld   be   i nc luded   i n   decompos i t ion .   Pos i t i ve  
d e f i n i t e   c h e c k s   s h o u l d  be   per formed  dur ing   d iagonal   d iv is ion .  The 
e n e r g y   t o t a l  error  measu re   shou ld   be   eva lua ted   du r ing   back   subs t i t u t ion .  
A s t r e s s   p r e c i s i o n   c h e c k   s h o u l d   b e  made a s  stresses a r e   c a l c u l a t e d .  
Rejec ted   measures   inc lude   Condi t ion  Number, r e a c t i o n s ,   t o t a l   r e s i d u a l ,  
Maxwell r e c i p r o c i t y ,  and d i r e c t   s o l u t i o n   e r r o r   c h e c k s .  

5.  D i s c r e t i z a t i o n   e r r o r s   a r e  much g r e a t e r   t h a n   m a n i p u l a t i o n   e r r o r s  
e v e n   f o r  beams  modelled by up t o  800 equa t ions  on a 27 b i f   m a n t i s s a  
computer.   This i s  t r u e  when e q u a t i o n s   a r e   i n  good so r t   (See   Re f .  2, 
page 42. ) 
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This  study o f  manipulation  errors  in  structural  equation  solutions has 
involved a  semiempirical approach.  Eight  error  measures will be  evaluated for 
a  range of  problems  to  establish  the  relation  between  error  magnitude  and  growth 
as a  function of error source. These  data  have led  to  identification of four 
validated checks of  displacement  and stress  prediction  accuracy. Ths calculation 
penalties for these  checks are negligible  compared  with  ths  total  solution calcu- 
lations. These  necessary and  efficient  checks are recommended  for all codes 
involving  computer  numerical  analyses  of  structures. 
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